-
氙氣Xe-氪氣-Kr-鹵素氣體--電光源照明混合氣
電光源分類 光源可分為自然光源和人工光源。就人造光源而言,以電的形式發光的光源統稱為電光源。根據電能轉化為光能的不同形式,電光源可分為以下幾類:氣體放電光源、熱輻射光源、固體光源和激光光源。前三種光源屬于非相干光源,激光光源屬于一種新型相干光源。光源研究是一門特殊的技術學科,包括光學、原子物理、電真空和色度學等多個學科。本工作主要針對氣體放電光源和電光源用混合氣體,其他類型的電光源僅作簡要介紹。 1.1氣體放電光源 氣體放電光源是放置在氣體中的兩個電極之間以發光的光源。氣體放電光源因其高輸出光而得更多 +
-
三氯氫硅還原法制取高純硅的化學原理
SiHCl3的合成 第一步:由硅石制取粗硅 硅石(SiO2)和適量的焦炭混合,并在電爐內加熱至1600~1800℃ 可制得純度為95%~99%的粗硅。其反應式如下: SiO2+3C=SiC+2CO(g)↑ 2SiC+SiO2=3Si+2CO(g)↑ 總反應式: SiO2+2C=Si+2CO(g)↑ 生成的硅由電爐底部放出,澆鑄成錠。用此法生產的粗硅經酸處理后,其純度可達到99.9%。 第二步:SiHCl3的合成 SiHCl3是由干燥的氯化氫氣體和粗硅粉在合成更多 +
-
氧同位素-氧18的氧氣的用途
氧元素的穩定同位素,符號岾O,縮寫為18O。1929年,W.F.Giorgio和H.L.Johnston利用分子光譜學發現天然氧由氧16、氧17和氧18同位素組成。現代測量表明,空氣中氧同位素的確切成分是氧16:氧17:氧18=2667:1:5.5。 1937年,H.C.Yuri和J.R.Hoffman通過水蒸餾獲得富氧水(重氧水)。在現代,分離氧氣18的主要方法仍然是水蒸餾法,通過水蒸餾法可以獲得99.8%的H218O。一氧化碳或一氧化氮的低溫蒸餾也可以從氧氣18中分離出來。 由于發現了重氧同更多 +
-
中國登月的未來已經到來
中國登月的未來已經到來 “作為嫦娥探月計劃的一部分,中國國家航天局(CNSA)已獲得政府批準,向地球的自然衛星發送三個軌道器,”中國月球和空間探索中心主任劉繼中說。 據報道,這一消息是在嫦娥五號航天器從月球到地球采集的土壤樣本中發現一種新礦物的第二天發布的。 這種礦物被稱為嫦娥石。它被描述為無色透明柱狀晶體。據報道,這種礦物含有氦3,這在地球上是罕見的。此外,在月球塵埃中發現了大量氦3,科學家可以找到如何從月球巖石中進一步提取這種最有價值的同位素。根據科學家的說法,&ldq更多 +
-
低氘水的功效與作用 低氘水與人體健康
氫與氧結合形成水(H2O),氘與氧結合生成重水(D2O)。天然水中氘的摩爾含量為0.015%,低于該摩爾數的水為低氘水。 低氘水與動植物生長 1965年,俄羅斯科學家給小動物喂自來水和冰雪融水,其中氘含量比正常值低25%。一段時間后,他們比較了兩組之間的生理差異,發現喂食冰雪水的動物比另一組生長更快,更有活力。這項工作在未來50年代得到了各國科學家的證實。 中國科學院蘭州冰川凍土研究所也進行了許多科學實驗。他們用冰川水、自來水和黃河水進行小麥試驗。結果表明,小麥植株含冰川水*。排在第二位的是黃河水更多 +
-
大氣中氦氣含量正在增加
自從人類認識到其作為能源的價值以來,化石燃料開采和燃燒過程中釋放的二氧化碳(CO2)已導致地球大氣層發生重大變化。CO2通常伴隨著良性氣體,如氦(he),可用于跟蹤此類排放。 長期以來,科學家們推測大氣中的HE4(氦同位素)含量增加,因為它與天然氣和其他碳氫化合物存在于同一儲層中。然而,到目前為止,測量結果相互矛盾且不準確。研究人員現在開發了一種測量惰性氣體的新方法,揭示了幾十年前的困難。 斯克里普斯海洋學研究所的大氣化學家和博士后研究員本杰明·伯納(Benjamin Birner)說更多 +
-
氙氣在產業用的最新應用
平面屏幕市場,特別是等離子電視,在氙氣需求增加方面發揮了重要作用。等離子顯示面板(PDP)用于生產大型電視顯示器(通常大于32英寸)。在兩個玻璃屏之間布置有數千個密封的小低壓氣室。室內充滿混合惰性氣體,如人體大氣和氙氣作為工作介質。 氙氣在航空航天和衛星工業的離子電機和等離子螺釘中的應用使用燃料氙氣,由于其重量和密度高,比空氣重約4.5倍。它主要用于維持衛星的軌道位置和機動控制。在離子馬達的磁腔的末端是兩個帶正電荷和負電荷的金屬網。正電荷和氨離子產生的強大電磁推力以高速(約100 oookm&micr更多 +
-
來自月球的氦-3氣體能做什么?
月球上的氦-3氣體能做什么?2020年底,中國文昌航天發射場傳來了好消息。長征五號發射器成功地將嫦娥五號探測器送入預定軌道,從而開啟了中國第一次外星取樣之旅。嫦娥五號帶回了兩公斤月球土壤。令人失望的是,月球土壤不含有機養分,不能種植蔬菜。但月球上還有另一種重要的物質,目前被稱為重要的清潔能源。 事實上,自20世紀90年代以來,人類,包括中國、以色列、日本、印度等國,已經開始了新一輪的月球探索高潮。在這一高潮中,氦3,一種神秘的元素,已經成為全世界的共同目標。目前,地球上只能使用500千克氦3,月球上可更多 +