-
氮15同位素是古人類食物結構研究中的重要元素
關于氮同位素,是指氮十五的分析與應用。氮十五也是古人類食物結構研究中的重要元素,它所表征的內容與碳十三是互補的,反映人類食物組成中蛋白質的攝入程度。通常食肉較多的人較之僅是依靠植物類生存的人其體內氮十五比值明顯偏高,而食魚較多的人,體內氮十五的比值會更高。一般食物鏈越長,其氮十五比值就越高,它反映了營養級的高低。氮十五分析用于古人類食物結構研究,國外是在上世紀70年代后逐漸開展起來的。由于氮本身的特性,與碳十三相比其分析難度要大得多,因之國內的研究起步較晚。2001年后,考古所碳十四實驗室通過反復實驗與研究,應用元更多 +
-
碳13、碳14同位素對考古研究的重要意義
碳氏家族的兄弟主要有3個,碳十二、碳十三和碳十四。它們在自然界中的豐度分布分別是碳十二約占98.9%,碳十三約占1.1%,碳十四約占10-10%。而恰恰是后兩者豐度較低的碳同位素,成為考古學研究中的“示蹤劑”,受到世人的關注。中科院考古所碳十四實驗室從事的正是通過碳十四、碳十三這樣兩個碳氏家族成員的分析來探討人類的過去。 碳十四又被稱作人類的放射性時鐘。之所以有此,在于它的紀年特性。碳十四是一種放射性同位素,半衰期為5730年。也就是說每過5730年,其數量就衰減一半。它由更多 +
-
氣體純度對激光混合氣的重要性
激光混合氣中組分氣的純度直接影響激光的性能,特別是氣體中氧、水、碳氫化合物等雜質的存在將導致激光輸出功率在鏡(面)和電極上的耗損,還會引起激光發射的不穩定。 激光混合氣組分的純度有著特殊要求,包裝混合氣的鋼瓶,充裝前也必須進行干燥處理,防止污染混合氣。如果將氦(He)氖(Ne)激光作為第一代氣體激光,二氧化碳激光是第二代氣體激光,在半導體制造領域將大量使用的氟化氪(KrF)激光,可稱為第三代激光。 激光混合氣中的發生氣體是激光發生器上用來產生激光的氣體,對氣體質量要求高,激光混合氣配制精度要求高更多 +
-
焊接常用的二元混合氣體和三元混合氣體
各類混合氣體中各組分的配比比例可以在較大范圍內變化,主要由焊接工藝、焊接材質、焊絲型號等諸多因素綜合決定。一般來說,對焊縫質量要求越高,對配制混合氣的單一氣體的純度要求也越高。 1.二元混合氣體 (1)氬-氧 氬中添加少量氧用于熔化極氣體保護焊,可提高電弧的穩定性,改善熔滴細化率,降低噴射過渡電流,改善潤濕性和焊道成形,如Ar+(1%-2%)O2常用于碳鋼、低合金鋼、不繡鋼的噴射電弧焊。 適當增加電弧氣氛的氧化性,使熔池液態金屬溫度提高,流動性得到改善,熔融金更多 +
-
二氧化碳裝置開工率小幅提升,后期價格存下跌的趨勢
近期北方降溫明顯,二氧化碳裝置產量有所提升,加之前期停工的企業也多陸續恢復生產,因此,近期國內二氧化碳裝置開工率小幅提升。據卓創統計數據顯示,截至10月10日,國內二氧化碳裝置開工率為52.49%,環比反彈0.56個百分點。 目前開工率在80%以上的企業占比為10%;開工率在60%-80%的企業占比為35%,開工率在30%-60%的企業占比為27%,開工率在30%以下的企業占比為28%。據卓創調研發現,雖然近期河北盧龍騰達、天成化工、滄州仁國等企業二氧化碳裝置開工率有所下滑,但是近更多 +
-
淺談醫療氣體管線供給系統
醫療氣體管線供給系統是一個現代化醫院重要的且必不可少的組成部分,它包括醫用氧氣系統、負壓吸引系統、壓縮空氣系統、笑氣(N2O)、氮氣系統及二氧化碳系統和中心工作站等。通過醫療氣體中心管道系統工程的公道設計,使醫院能以較低的投資獲得一個功效強大的供氣系統,確保醫院的醫療系統高效運行。 要想弄清楚醫療氣體管線供給系統,必須知道醫用氣體都有哪些,下面紐瑞德小編就給大家介紹一下吧。 一、醫用氣體的基本種類及用途 醫用氣體的基本種類為醫用氧氣、負壓吸引、壓縮空氣、氮氣、笑氣(N2O)及二更多 +
-
史上最全的“干冰”用途介紹
固態的二氧化碳稱做“干冰”。“干冰”是一種比冰更好的致冷劑。它冷卻的溫度比冰低的多,利用“干冰”可以產生-78℃的低溫。而且,“干冰”熔化時,不會像冰那樣變成液體,它直接蒸發成為溫度很低的、干燥的二氧化碳氣體,因此它的冷藏效果特別好。 下面和大家一起分享一下干冰的一些用途。 ▲航空食品的保存已普遍采用干冰冷藏。 ▲制作冰淇淋時加入干冰,冰淇更多 +
-
淺談二氧化碳驅油技術
大慶勘探開發研究院通過開創性的氣驅油藏工程方法研究,基本形成了二氧化碳驅油綜合調整技術,其項目成果在榆樹林和海拉爾油田得到規模化應用。實施綜合調整后,試驗區氣油比上升速度得到控制,采油井受效明顯。這不僅有力支撐了外圍油田的穩產,也為大慶薄差油層增儲上產增添科技底氣。 截至目前,大慶油田二氧化碳驅油工業化試驗區自開展試驗以來,累計注氣136萬噸,二氧化碳驅累計產油39萬噸。其中,在海拉爾油田,貝14試驗區的受效程度明顯提高,部分井開采方式由抽油轉為自噴;在榆樹林油田樹101試驗區穩油控氣,扶楊三類難更多 +
-
溫室氣體“二氧化碳”竟能發電?
作為溫室氣體的主要成分,二氧化碳的排放問題一直是各方關注的焦點。紐瑞德了解到,一家美國公司嘗試將“麻煩”轉變為資源。 位于美國休斯頓,一座裝機容量為50MW的并網天然氣發電站上測試一項新型發電技術。這項新技術所使用的燃料中包含95%的超臨界CO2。按照NET Power計劃,如示范電站取得成功,將在2021年前完成該技術的商業化應用。 將CO2變為燃料的關鍵在于通過一定的溫度和壓力使CO2達到超臨界流體狀態。研究人員表示,在31.1 °更多 +
-
二氧化碳加氫制取芳烴研取得新進展
近日紐瑞德小編了解到,中科院大連化物所甲醇制烯烴國家工程實驗室在二氧化碳加氫制取芳烴研究中取得新進展。 在過去兩個世紀,大規模利用化石資源給人類社會帶來了空前的繁榮,然而同時大量排放的二氧化碳溫室氣體不斷地威脅著我們的生存環境。另一方面,太陽能、風能、生物能、潮汐能等可再生能源因能量密度低、間歇性等特點限制了其廣泛應用。利用可再生能源產生的電能制取氫氣,并將二氧化碳轉化成高附加值的燃料和大宗化工品可以同時起到儲存、利用二氧化碳與可再生能源的作用,具有重要的戰略意義。 二氧化碳是一更多 +